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ABSTRACT. Dynamic models have long been a common tool to support management of ecological and economic systems and played
a prominent role in the early days of resilience research. Model applications have largely focused on policy assessment, the development
of optimal management strategies, or analysis of system stability. However, modeling can serve many other purposes such as
understanding system responses that emerge from complex interactions of system components, supporting participatory processes,
and analyzing consequences of human behavioral complexity. The diversity of purposes, types, and applications of models offers great
potential for social-ecological systems (SESs) research, but has created much confusion because modeling approaches originate from
different disciplines, are based on different assumptions, focus on different levels of analysis, and use different analytical methods. This
diversity makes it difficult to identify which approach is most suitable for addressing a specific question. Here, our aims are: (1) to
introduce the most common types of dynamic models used in SESs research and related fields, and (2) to align these models with SESs
research aims to support the selection and communication of the most suitable approach for a given study. To this end, we organize
modeling approaches into a reference scheme called “modelling for social-ecological systems research” (ModSES) along two dimensions:
the degree of realism and the degree of knowledge integration. These two dimensions capture key challenges of SESs research related
to the need to account for context dependence and the intertwined nature of SESs as systems of humans embedded in nature across
multiple scales, as well as to acknowledge different problem framings, understandings, interests, and values. We highlight the need to
be aware of the potentials, limitations, and conceptual backgrounds underlying the different approaches. Critical engagement with
modeling for different aims of SESs research can contribute to developing integrative understanding and action toward enhanced
resilience and sustainability.
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INTRODUCTION
Understanding the dynamics that arise from the interactions and
feedbacks between people, societies, and the ecosystems on which
they depend is one of today’s major challenges (Carpenter et al.
2009). Social-ecological systems (SESs) research is an emerging
field that focuses on the interdependence between humans and
nature that underlies many sustainability problems. Resilience
thinking is a perspective used in SESs research that emphasizes
the interdependent, complex, adaptive nature of human-
environment systems and their nonlinear behavior, uncertainty,
and surprise (Berkes and Folke 1998, Norberg and Cumming
2008, Folke et al. 2016). It emphasizes the need to understand and
manage change, both in terms of withstanding shocks and
disturbances through persistence and adaptation and also using
them as an opportunity to change major characteristics of the
system fundamentally when ecological, economic, or social
structures make the existing system untenable, i.e., to transform
(Folke et al. 2010). Resilience thinking thus goes beyond earlier
notions of resilience as the capacity of the system to withstand
shocks, and beyond a single focus on resilience as a system
property or outcome. When we refer to SESs research here, we
refer to research that takes a resilience thinking perspective.  

Modeling played an important role in the early development of
the concept of resilience, particularly in shifting the view of
ecosystems as systems that evolve toward a single equilibrium to
systems with multiple stable states (Holling 1973). Models of

multiple stable states in ecosystems, and regime shifts or
transitions between them, are still widely used today (e.g., Biggs
et al. 2009, Scheffer et al. 2009, Hughes et al. 2017). In the past,
models have also been used in the practice of adaptive ecosystem
management such as in the Everglades, USA, particularly to
assess the range of possible outcomes of management measures
in complex systems (DeAngelis et al. 1998, Gunderson and Light
2006). Recent research about SESs and their governance from a
resilience perspective, however, involves very little modeling. This
is somewhat surprising, given recent developments of modeling
in related fields such as ecology (Grimm and Railsback 2005),
land system science (Matthews et al. 2007), environmental
assessment and management (Kelly et al. 2013), and social
simulation (Halbe et al. 2015). These developments include the
proliferation of novel approaches from complexity science such
as agent-based modeling (Filatova et al. 2013) and novel forms
of model application such as participatory modeling to support
societal learning and policy processes (Voinov et al. 2016).  

One reason for the limited attention to modeling in resilience-
based SESs research may lie in the fragmentation of approaches
across disciplines, which accompanies an often confusing
diversity of purposes and model types, different underlying
assumptions, problem foci, levels of analysis, and methodologies
(Schlüter et al. 2012). Another reason may be an often rather
narrow view of modeling among nonmodelers, based on
experience with the use of simplistic economic models for policy
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support or complex biophysical models that follow a systems
engineering tradition, both of which have limited applicability to
the types of problems addressed by SESs research (Allison et al.
2018). Moreover, modeling adaptation and transformation of
intertwined SESs is difficult and requires pushing modeling
frontiers. Finally, the recognition of the context and path
dependence of SES dynamics has resulted in a focus of resilience-
based SESs research on in-depth case studies that allow for rich,
context-based understanding of resilience management or
transformation challenges (e.g., Olsson et al. 2008, Gelcich et al.
2010).  

Broadening the use of models and modeling in SESs research may
help address the challenges for analysis and governance resulting
from the intertwined, diverse, and complex adaptive nature of
SESs. Although the importance of social-ecological relations and
interactions has long been recognized, there is still a lack of tools
for analyses that go beyond the separation of social and ecological
to account for social-ecological relations and feedbacks. SESs are
dynamic systems that continuously change and coevolve.
Capturing the dynamics that arise from complex interactions
across multiple scales to influence adaptation or transformation
is another challenge to which different modeling approaches may
contribute significantly. These challenges pose interesting
research frontiers for the field of SES modeling itself  (Schlüter et
al. 2012, Filatova et al. 2016, Schulze et al. 2017). Thus, we believe
that a deeper engagement of the SESs research community with
dynamic modeling, and of the modeling community with recent
developments in SESs research, can help advance the field and
enhance the understanding and governance of SESs as complex
adaptive systems.  

Here, our aim is to take a step toward that deeper engagement
and encourage the use of modeling for the analysis and
governance of SESs by introducing SESs researchers to the most
common types of models and applications of dynamic modeling
relevant for SESs research, and by providing guidance for
identifying the modeling approach most suitable for the aims of
a given study or activity. To this end, we propose the reference
scheme “ModSES” (modeling for social-ecological systems
research), which aligns different SESs research aims with suitable
model types and applications along the dimension of increasing
realism, from theoretical study to empirical case, and along the
degree of integration of different disciplines, stakeholders, and
knowledge systems, from mono- to inter- and transdisciplinary.
These dimensions capture two key challenges in dealing with
complex and wicked sustainability problems: the need to account
for context dependence; and the need to study SESs as integrated
wholes where humans are embedded in ecosystems, not as
separate social and ecological systems, and to take into account
different, often contested, problem framings, understandings,
interests, and values when developing solutions (Tengö et al.
2014). Although ModSES is intended for modelers and
nonmodelers alike, we have particularly developed it to support
collaboration between field researchers and modelers because
these collaborations provide exciting opportunities for addressing
these challenges.  

We first review past modeling studies in resilience research to
highlight the early uses of modeling. We do not review the
increasing numbers of SES modeling studies since 2012 because
that is beyond the scope of this paper and has been done elsewhere

(Schulze et al. 2017, Egli et al. 2019). Instead, we assess the use
of different types of model and model applications in related fields
that can support different types of overarching SESs research
aims and challenges. The research aims and challenges reflect
recent developments in resilience thinking, particularly the shift
in focus from persistence toward adaptation and transformation,
the importance of the intertwinedness of people and ecosystems,
and the complex adaptive nature of these systems (Folke et al.
2016). We align these aims with different purposes of models and
review commonly used model types in related fields that can serve
the different purposes. The combination of a type of model, e.g.,
system dynamics or agent-based, with a degree of realism and
degree of integration characterizes what we call a modeling
approach. We align modeling approaches with SESs research aims
within the reference scheme ModSES to guide their application
for different SESs research activities. In our discussion of the
potential of modeling for resilience thinking and SESs research,
we highlight the need to move toward a broader use of models
beyond scientific understanding to support communication and
knowledge integration in inter- and transdisciplinary processes.
We hope that ModSES will be a first step to help SESs researchers
and people interested in using modeling to support adaptation
and transformation processes to choose appropriate tools.

PAST USE OF MODELING IN RESILIENCE RESEARCH
Modeling played a seminal role in the early days of resilience
studies in ecology and their extension to natural resource and
ecosystem management (Holling 1973, Crépin 2007). Our review
of 52 resilience modeling studies from 1998 to 2011 shows that
most models were developed to understand and manage the
persistence of ecological or natural resource systems to
disturbance or change (Section 3, Table A1 in Appendix 1). The
main aims of these studies were: to assess the persistence of a
specific system, to identify persistence mechanisms, to develop
methods and measures to analyze and quantify resilience, and to
evaluate and develop management strategies. Models for
management focused either on an exploration of impacts and
trade-offs among different alternative management strategies or
on finding optimal management strategies that maximize
resilience and economic performance. Only four studies used
modeling to understand and manage adaptation, and none
addressed transformation. The latter has not changed much since
2012 (but see Zagaria et al. 2017).  

The most common model purposes are understanding and
decision or management support (Fig. A4a in Appendix 1).
Models for understanding are mostly generic, equation-based
models, whereas those for decision or managment comprise both
generic models for the development of (optimal) management
strategies or context-specific, often rule-based, models for
assessing implications of alternative management strategies in
particular case studies (Fig. A4b in Appendix 1). The prominence
of generic models is in part a historical legacy of the origin of the
first resilience models in theoretical ecology, or resource
economics. Only approximately one-third of the studies use
models that are specific to a case study. This situation limits their
potential to address real world problems in which context-specific
complex interactions determine system behavior. This low
number may be an underestimate because case-specific models
that have been used for the practice of adaptive (co-)management
have rarely been reported in the scientific literature.  
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Many models focus on ecological resilience to an anthropogenic
driver without accounting for feedback from ecosystem change
to human behavior. The very rudimentary representation of the
social system in many early resilience models strongly limits the
possibility to address the implications for resilience of social-
ecological feedbacks, for instance, the response of resource users
to changes in ecosystem state. Where they have been addressed,
e.g., in bioeconomic models that investigate optimal management
strategies, they do so at a highly aggregate level such as the level
of a social planner who has perfect foresight and they are generally
prescriptive, i.e., they aim to determine optimal policies under
extremely simplified assumptions, rather than trying to
understand real-world dynamics. Feedbacks at the level of
individual actors or organisms and feedbacks across levels or
scales have largely not been addressed. The lack of inclusion of
full feedback loops in SES models is still an issue in SES modeling
today, as recently highlighted by Filatova et al. (2016) and Schulze
et al. (2017). However, there are also promising developments of
models that explicitly consider social-ecological feedbacks and
resilience (Huber et al. 2013, Lade et al. 2013, 2015).  

We provide more information on the selection of papers and their
coding, as well as additional insights from the reviewed studies
from 1998–2011, in Appendix 1. That information includes, e.g.,
the types of resources and social systems modeled, types of
disturbances, inclusion of social-ecological feedbacks, and depth
of model analysis.

MODEL PURPOSES AND ROLES IN SUPPORT OF
DIFFERENT SOCIAL-ECOLOGICAL SYSTEM
RESEARCH AIMS
Resilience thinking was introduced as a framework for the study
and management of SESs that highlights the interplay between
persistence and change across scales (Folke et al. 2010). Much
empirical and conceptual research in recent years has focused on
the capacity to transform toward more sustainable trajectories (e.
g., Westley et al. 2013, Moore et al. 2014, Olsson et al. 2014).
Increasing emphasis has been placed on the need to acknowledge
the interdependence between people and the biosphere, and the
complex adaptive nature of SESs (Folke et al. 2016). Resilience
thinking, as a problem-oriented research field within
sustainability science, has a strong emphasis on developing
approaches and processes that support change in real-world,
place-based, problem contexts. It also needs to build on
disciplinary research and interdisciplinary frameworks to ensure
conceptual soundness. Aims of SESs research thus span the whole
range from generalization and theory building to on-the-ground
support for transformative processes.  

Along the tensions of addressing real-world problems and
developing SESs theory through processes that integrate diverse
knowledge systems and account for the complex and intertwined
nature of SESs, we identify five overarching SESs research aims
that may benefit from greater involvement of modeling: (1) to
identify generic processes or principles that determine SES
behavior, (2) to manage SESs as complex adaptive systems, (3) to
understand the emergence of SES phenomena, (4) to generate
transdisciplinary knowledge about social-ecological interactions
and feedbacks, and (5) to support social learning and exploration
of new pathways for societal transformation (Table 1). Aim 1
represents classical deductive ways of theory testing and building

as practiced in economics or theoretical ecology applied to SESs
research. Aim 2 addresses the challenges of managing complex
adaptive SESs that are characterized by uncertainty, surprise, the
potential for abrupt change, and unintended outcomes (Levin et
al. 2013). Aim 3 relates to an increasing call for understanding
SES outcomes as emerging from the microlevel actions and
interactions of diverse human and nonhuman entities and
processes by which they are constrained (Levin et al. 2013). This
call includes identifying the complex causal processes that give
rise to SESs outcomes such as resilience or adaptive governance
(Biesbroek et al. 2017) and understanding the consequences for
governance (as in aim 2). Aim 4 addresses the need to develop an
integrative, transdisciplinary understanding and theories about
social-ecological interactions and feedbacks to capture better the
intertwined nature of SESs (Folke et al. 2016). Aim 5 represents
work on SES governance and transformations, particularly
research or activities that aim to support societal processes of
transformation through action research, participatory processes,
and other forms of stakeholder engagement.  

These research aims have direct consequences for the purpose of
the models used to address them. Models are always developed
for a particular purpose (Kelly et al. 2013). This idea is important
because the research or study aim and the associated research
question (if  applicable) determine the choice of the degree of
realism a model should have, and thus, its complexity, as well as
the degree to which it should build on scientific knowledge from
one discipline, several, or a broader set of knowledge systems,
including nonscientific ones. Both choices, about the degree of
realism and the degree of integration, will influence the selection
of system boundaries, the variables and processes that will be
included in the model, how decisions will be made (based on
theory, empirical data, or field observations), and how the model’s
validity will be evaluated. Common model purposes relevant for
SESs research are system understanding, exploration,
explanation, prediction, management support, communication,
learning, and theory building (e.g., Kelly et al. 2013, Poile and
Safayeni 2016).  

Finally, models can play different roles within a research or
participatory process, from serving as analytical, predictive,
explanatory, or exploratory tools to providing a boundary object
to bridge across the interface of theory and empirics
(Baumgärtner et al. 2008) or science and society (Collier et al.
2011, Seidl 2015). Models can be prescriptive, aiming at
identifying how SESs should be managed, or descriptive, aiming
to describe, understand, and explain how SESs work. Classical
roles of models are their use as tools for determining optimal
management strategies or predicting the outcomes of
management measures. Other roles that are increasingly common
and possibly more useful in SESs research are serving as eye-
openers, as arguments in disputed problem situations, or as
objects to create consensus (van Daalen et al. 2002). The same
model purpose can be associated with different model roles; for
instance, the purpose of a model can be to capture key processes
of a resource management situation in a particular place. This
model can serve as a tool for predicting the consequences of a
management measure or as an eye-opener about the side-effects
of a particular management action. Several roles can overlap.
However, it is important to make sure a model is adapted for the
role for which it is intended, in the same way as it should be
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Table 1. Social-ecological systems (SESs) research aims and corresponding model purposes and roles.
 
SES research aim Example Purpose of model Role of model

Identify generic processes
or principles that
determine SES behavior

• Typologies or archetypes of SESs
• Principles of resilience
• Principles governing changes in SESs

• Understanding and theory building
• Models aim to capture general system
behavior and are often based on theory;
generally not applied to specific systems,
but to a class of systems

Analytical tool

Manage SESs as complex
adaptive systems

• Development of optimal, robust, or
adaptive management strategies that take
uncertainty, different time scales, and
nonlinear behavior of SESs into account

• Exploration, management support,
prediction
• Models aim to explore or predict system
responses to policy or are used for
development of optimal or robust policy

Tool for forecasting or prediction

Understand the
emergence of SES
phenomena

• Identification of micro-level social-
ecological processes and mechanisms
that give rise to macro-level SES
outcomes
• Understanding of interactions across
scale

• Understanding and explanation
• Purpose of model is to explore system
behavior produced by complex
interactions between actors and
ecosystems; often based on empirical data;
often developed for a specific case study

Tool for exploration and
explanation

Generate
transdisciplinary
knowledge about social-
ecological interactions
and feedbacks

• Linking insights on human behavior
with insights on nonlinear ecological
dynamics to assess implications for
natural resource management
• Integrating insights on social and
institutional change with insights on
ecosystem dynamics to understand
transformation

• Understanding, exploration,
communication, learning, theory building
• Purpose of model is to facilitate
integration of disciplinary knowledge
about ecological and social processes, test
competing hypotheses, and experiment
with a virtual system to enhance
understanding and build transdisciplinary
theory

Tool for exploration and
experimentation;
Boundary object for
interdisciplinary knowledge
integration

Support social learning
and exploration of new
pathways for societal
transformation

• Development of shared understanding
and solutions for a policy problem
• Development of a vision for a
sustainable future and strategies to get
there

• Exploration, communication, learning
• Purpose of model or model building
process is to make explicit different system
understandings of stakeholders, explore
alternative development pathways, and
support social learning

Tool for exploration or forecasting
(scenario analysis);
Boundary object, eye opener (van
Daalen et al. 2002), myth buster
(Smajgl and Ward 2015)

adapted to its purpose. An unreflected use of a model in a different
role can be problematic.  

To summarize, the aim of a given research project or activity
determines the purpose of the model and its role in the scientific
or participatory process. It also determines the degree of realism
of the model, as well as the extent to which the model builds on
inter-or transdisciplinary knowledge. We call the combination of
a degree of realism of a model, the degree of integration of
different knowledge in model design, and the type of model used,
a “modelling approach”. Next, we discuss different types of
models commonly used in fields related to SESs research, and
then explicate different degrees of realism that can be expressed
with the different model types.

COMMONLY USED MODEL TYPES IN RELATED
FIELDS
The numbers of model purposes and applications have increased
with the development of new model types. The increase in
computational power now allows for the design of complex,
structurally realistic models. Different model types are more or
less suitable for the different purposes and roles outlined above
because they may lead to different choices regarding the trade-
offs among generality, realism, and precision (Levins 1966).
Different model types also allow for different types of analysis
and represent top-down or bottom-up views of a system. For
instance, generic, analytical models have a high level of generality

at the expense of realism, can be analyzed using mathematical
methods such as stability analysis, and represent a top-down view
of the system in which individual system elements are represented
as averages (Table 2). In contrast, structurally realistic models are
often highly realistic at the expense of generality, are analyzed
through simulations and statistical techniques, and represent
bottom-up views of the system that incorporate heterogeneity of
system elements. Different model types also have their origin in
different disciplines, which influences the basic underlying
assumptions about system dynamics (e.g., systems in equilibrium
vs. constantly changing), model structure (e.g., from first
principles vs. empirical data and understanding), human behavior
(e.g., rational actor vs. rule-based decision making), and level of
abstraction (e.g., stocks vs. individual entities).  

We draw on model-based research and activities in the fields of
ecology, resource economics, land system science, computational
social sciences, and participatory natural resource management
to identify different model types suitable for supporting the
research aims outlined in Table 1 (Table 2). We also build on earlier
reviews of model types and purposes in related fields such as land-
use and land-cover change (Parker et al. 2003), integrated
assessment (Kelly et al. 2013), regime shifts (Filatova et al. 2016),
and transition research (Halbe et al. 2015). We complement these
studies by including an analysis of the disciplinary origins and
conceptual and analytical basis of different model types and
purposes because they are critical for understanding assumptions
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Table 2. Descriptions of model types.
 
Type of model Origin or conceptual

foundation
Formalization Analysis Examples of application Literature examples

Dynamical
systems models

Physics, theoretical
ecology, economics

System of differential or
difference equations
representing rate of change
of aggregate system variables

Symbolical or
numerical analysis of
fixed points, stability,
attractors,
bifurcations

Regime shifts, alternative
stable states

Biggs et al. (2009), Scheffer
et al. (2009), Figueiredo
and Pereira (2011), Horan
et al. (2011), Tavoni et al.
(2012), Lade et al. (2017)

Bioeconomic
models

Resource economics
(Clark 1990)

Objective function
representing control variable
to be maximized given a
dynamic resource and
economic constraints

Control theory,
optimization

Optimal management of
resource with regime
shifts, response of
resource users to new
policy

Smith and Wilen (2003),
Crépin (2007), Dowling et
al. (2012)

System
dynamics
models

Organization
research (Sterman
2001), environmental
studies (Forrester
1994)

Causal-loop diagrams,
differential or difference
equations representing rate
of change of aggregate
system variables

Time-based
simulations,
simulation games

Feedback analysis,
identification of leverage
points to change system
dynamics

Carpenter and Gunderson
(2001), Elsawah et al.
(2017)

State-and-
transition
models, Markov
chain models

Ecology (Westoby
1989), agricultural
economics

Matrix of transition
probabilities of states

Time-based
simulations, analysis
of emergent patterns
and structural change

Resource use and regime
shifts in rangelands or
forests caused by natural
or human drivers such as
exploitation, fire, and
climate change

Satake et al. (2008),
Zimmermann et al. (2009),
Bestelmeyer et al. (2017)

Structurally
realistic models

Ecology (Grimm and
Railsback 2005),
social sciences
(Epstein 2006),
computer science

Computational
representation of agents,
their properties, and
interactions with each other
and their environment

Time-based
simulations, analysis
of emergent macro-
level patterns,
statistical analysis of
simulation data

Emergent system-level
patterns and dynamics,
policy assessment taking
spatial structure and
agent diversity into
account

Wiegand et al. (2003),
Filatova et al. (2011),
Grimm and Railsback
(2012), Smajgl and
Bohensky (2013)

that underlie each approach. Boundaries between model types are
fuzzy, e.g., an agent-based model can also be formalized in
difference equations, and model names can vary among
disciplines. Major differences between model types are the level
of aggregation (mathematical models often work with aggregate
variables based on mean field approximation, whereas structural
realistic models represent individual objects or agents and their
interactions) and the methods used for solving the model
(mathematical analysis vs. simulation over time).  

Dynamical systems models, bioeconomic models, and system
dynamics models are all based on dynamical systems theory,
which is an area in mathematics that studies the behavior of
complex dynamical systems. These models differ with respect to
their construction, formalization, and analysis. Dynamical
systems models are formalized as systems of differential equations
that are analyzed to identify fixed points or steady states, assess
their stability, and identify attractors, bifurcations, or tipping
points. Models are often solved analytically, which strongly limits
the numbers of variables and functions that can be included.
Results are often presented graphically as state or phase-space
diagrams. Dynamical systems models represent the system in a
highly simplified and aggregate way, often building on well-known
models from ecology such as the Lotka-Volterra predator-prey
equations or from bioeconomics such as the Gordon-Schaeffer
harvesting model (Gordon 1954). Their purpose is mostly to
understand and predict general system behavior. Seminal work
in ecology includes Holling’s (1973) work on alternative stable
states of ecosystems, as well as research on regime shifts, critical
transitions, and early warning signals (e.g., Scheffer et al. 2009).

Further fields of application include the dynamics of a natural
resource under technological and demographic change (Anderies
2003).  

Bioeconomic models apply economic theory to natural resources,
most commonly, fisheries. They are analyzed to identify optimal
management strategies by maximizing a production function that
uses a natural resource and effort or labor as inputs. An
optimization approach is used to find the effort that maximizes
the profits of a single owner or a social manager under the
constraints of the dynamics of the natural resource. Bioeconomic
models are also used to simulate the development of an economic
system of natural resource use over time (instead of optimizing
a control variable). Simulation-based bioeconomic models are
similar to system dynamics models (described next), with a
specific focus on economic processes. Bioeconomic approaches
are very common for policy assessments in fisheries, e.g., the effect
of the introduction of a marine reserve on resource users and
ecological outcomes (e.g., Sanchirico and Wilen 2001, Smith and
Wilen 2003, Dowling et al. 2012). Most bioeconomic models in
fisheries only consider economic drivers of resource users’
decisions (van Putten et al. 2012). The same situation holds for
the use of bioeconomic models in agriculture, although models
assuming multicriteria approaches exist (reviewed by Janssen and
van Ittersum 2007).  

System dynamics models are often constructed using causal loop
diagrams, which represent feedbacks that are assumed to drive
the dynamics of a system. These models are often analyzed
graphically by identifying the feedbacks that stabilize the system
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(negative or balancing feedbacks) and those that destabilize it
(positive or reinforcing feedbacks), and assessing their relative
strengths (see Marzloff  et al. 2011 for a reef ecosystems example).
Causal loop diagrams and the stocks and flows on which they are
based can also be formalized in simulation models in which the
change of the system at each time step is represented using
difference equations. System dynamics models are analyzed by
simulating them over time and studying the resulting system-level
behavior (e.g., Baur and Binder 2015) or assessing the implications
of management or policy interventions (Elsawah et al. 2017). The
differences among dynamical systems models mainly lie in the
approaches to analyzing the models, e.g., mathematical analysis
of fixed points or equilibria vs. simulation of system development
over time, which may or may not result in stable states (Elsawah
et al. 2017).  

State-and-transition models are used to investigate and
communicate landscape changes over time (Bestelmeyer et al.
2017). They are based on the assumptions that the ecosystem
under consideration can exhibit multiple alternative states and
that transitions between states take place with a certain
probability. The transitions are typically driven by the interaction
of succession, disturbance, and management, and can lead to
irreversible states (Daniel and Frid 2012). This type of model has
been applied to a number of management-related questions
involving forests, rangelands, and wetlands. State-and-transition
models are strongly related to empirical data. Conceptual state-
and-transition models that use boxes-and-arrows diagrams have
also proven to be helpful tools to integrate local knowledge and
to support the generation of hypotheses in participatory processes
(e.g., Knapp et al. 2011, Kachergis et al. 2013 for rangeland
management) or for qualitatively comparing different
management actions (e.g., Bestelmeyer et al. 2004 for fire vs.
grazing processes in a rangeland system).  

Structurally realistic models represent a system as composed of
entities (human and nonhuman), their interactions, and the
environment in which they are embedded. They take structural
aspects such as spatial arrangements, heterogeneity of actors, or
their interactions through (social) networks relevant for a given
research question into account, often at two or more levels.
Structural aspects and decision making of agents are often
formalized via rule-based approaches (“if-then rules”) or decision
trees, which allow a more realistic mapping of relevant processes
than possible in generic mathematical models. In ecology,
structurally realistic models are often called individual-based
models; in social simulation and environmental research, models
that include human actors are called agent-based models. They
are a powerful model type to generate a mechanistic and multilevel
understanding of SESs. Models representing different hypotheses
about possible mechanisms can be constructed and model
outcomes can be tested against empirical data (DeAngelis and
Mooij 2005) using pattern-oriented modeling (Grimm et al. 2005).
They are grounded in a complexity perspective and allow for an
abductive approach to science in which model construction is
inspired by well-grounded assumptions or theories, and model
analysis follows an inductive approach in which data are provided
by simulations (Griffin 2006). Their computational nature
facilitates the construction of models that are more realistic than
dynamical systems models or bioeconomic models and, thus, are
easier to link to real world problems (Berger and Schreinemachers

2006, Janssen and Ostrom 2006, Smajgl and Bohensky 2013,
Schulze et al. 2017) but are also more difficult to analyze. However,
structurally realistic models do not aim to be as realistic as
possible; they include details only where they are considered
relevant to answer a given research question.

DEGREE OF REALISM OF A MODEL
Each model type can be used to develop a model with different
degrees of realism, but some are more suitable for generic
representations and others for high degrees of realism. For the
purpose of our analysis, we distinguish between (1) generic or
theoretical models whose structure and assumptions on causal
relations are based on (bio)economic or ecological theory, (2)
stylized or toy models that are built to represent only selected
aspects of a system in a stylized way for the purpose of
investigating their impact on outcomes, and (3) empirical models
whose structure, assumptions, and parameter values are based on
information and data from a specific case. In reality, of course,
the boundaries of the three classes are fuzzy; an empirical model
will often also include assumptions that are based on theory, and
a theoretical model may be inspired by or tested in a particular
case. Toy models are often built on a mix of theoretical and
empirically informed assumptions. Because they have become
quite popular, particularly with agent-based modeling, we briefly
describe stylized or toy models in more detail.  

Stylized or toy models are “virtual laboratories” that facilitate
computational experimentation with an SES in situations where
policy experiments are not possible (Seppelt et al. 2009). They
focus on a few, often hypothesized, aspects of a complex problem
situation as a first step to enhance understanding of the behavior
of a system. They are particularly useful in situations in which
the quantitative knowledge base or the time frame available for
model development is too limited for the development of
structurally realistic models, or where a more complex model is
too difficult and nontransparent to be well communicated to
stakeholders. Their advantage lies in the possibility of exploring
the consequences of different assumptions about social-
ecological feedbacks and possible ecological and human
responses. In such settings, toy models can serve as thought
experiments for rapid development and testing of hypotheses to
inform a field campaign (Turner 2003), to explore new strategies
and development pathways, or to develop a model prototype to
generate new hypotheses that can be tested later in more
structurally rich models (Müller et al. 2011). For instance a toy
model can be used to assess the potential and risks of new
institutions, taking the response of the affected users into account.
Management strategy evaluation, as applied to conservation, uses
toy models to assess different types of uncertainties and their
implications for wildlife management (Milner-Gulland 2011).
Van Poorten et al. (2011) used a toy model of recreational fisheries
to demonstrate how the panacea of stocking can emerge from
management actions of bounded rational actors in a variable
environment. These models can also serve as tools for
communication and integration of different conceptual
backgrounds and perspectives, as a basis for the development of
management strategies (Daw et al. 2015).  

The degree of realism needed for a given modeling study is a
dimension well known to environmental modelers. Of particular
interest here is the need to navigate the tension between the context
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dependence of social-ecological phenomena and the need to find
generalizable insights to support management and governance.

LINKING RESEARCH AIMS WITH MODELING
APPROACHES: THE REFERENCE SCHEME “ModSES”
The reference scheme ModSES delineates a space to map different
research aims and align them with suitable modeling approaches.
Each research aim and model type is mapped according to the
degree of realism and degree of integration that models in support
of this aim should incorporate (Fig. 1). The tensions between
generality and realism and between science and society are
struggles that different environmental modeling communities
have faced for decades. Modeling studies aimed at addressing the
former cover a range from theoretical to case-based research that
differ with respect to the levels of abstraction and aggregation of
relevant entities and interactions or processes (Baumgärtner et al.
2008). Studies addressing the latter are concerned with the
complexities and context dependence of specific problem
situations as well as the need to take into account different
knowledge systems and coproduce knowledge with stakeholders
(Tengö et al. 2014). The nature of these tensions is the same for
SESs research, but with some important nuances related to the
complexity and intertwined nature of SESs, where humans and
ecosystems coconstitute and affect each other across all scales
(Folke et al. 2016). This situation requires a focus on social-
ecological relations and interactions as the core processes
determining outcomes, which significantly goes beyond an
ecological model that incorporates human action as a driver, or
an economic model that regards ecosystems as an input to a
production function (Schlüter et al. 2012). This focus on
interdependence poses additional challenges for the degree of
integration and the degree of realism because social-ecological
relations can play out differently in different contexts.

Fig. 1. The reference frame “modeling for social-ecological
systems research” (ModSES). The gray area indicates the
location of stylized or toy models, which can be built using
different model types. SES = social-ecological system.

Our alignment of research aims with model types, degrees of
integration, and realism is based on an assessment of the
characteristics of different model types and a review of their use
in other disciplines. Additionally, it is informed by many years of
the authors’ modeling experience in ecology, environmental
systems, natural resource management, SESs, and participatory
processes using all types of models highlighted here. When
assessing the suitability of a model type for a research aim, the
following two criteria are of importance. First, the research aim
and research question determine the level of aggregation of the
elements in the model (e.g., subsystem, aggregate variable, or
individual agent) and level of realism needed in a model. Different
types of models allow different levels of aggregation and realism;
for example, a dynamical systems model cannot incorporate
individual characteristics of actors or organisms and is very
restricted with respect to its complexity because of the
mathematical analyses used to identify fixed points and their
stability. In contrast, a structurally realistic model disaggregates
a SES into agents (individual or collective actors such as farmers
or households or tree functional groups) and their interactions
with each other and their environment. That type of model can
be implemented with a high degree of realism as an empirical
model that is parameterized with empirical data or as a toy model
that is based on hypotheses about agent interactions that may be
informed by empirical observations or theory. These models,
however, can only be analyzed through statistical analysis of the
outcomes of time-based simulations.  

Second, some types of model have been used more commonly for
specific research aims than others. For example, dynamical
systems models have rarely been used for participatory modeling,
whereas structurally realistic models are rarely used for theory
testing. Finally, models can be predictive or explorative, and
descriptive or prescriptive, which influences the choice of model
type for a study or application. If  the purpose of a model is to
identify an optimal management strategy for a fishery, a
prescriptive bioeconomic model solved to maximize a utility
function will be most suitable. If  the purpose is to understand
how the diversity of human behavior affects the outcomes of a
fishery, the choice will be a descriptive structural realistic model
that enables representation of heterogeneous fishers and their
interactions with fish stocks.  

At the lower left corner of ModSES (Fig. 1) lies the aim to identify
generic processes or principles that determine SES behavior,
which is often supported by dynamical systems models,
bioeconomic models, or theoretical state-and-transition models,
which generally rely on theory and methods from the respective
disciplines, particularly ecology and economics. This modeling
use has been one of the most common in early resilience research,
building on Holling’s (1973) seminal work on the stability of
ecosystems, and a large body of research on critical transitions
(Scheffer et al. 2001, 2009, Brock and Carpenter 2006). These
models are predominantly developed and used by scientists.  

At the other end of the horizontal axis in the lower right corner
(Fig. 1), one can find structurally realistic models or state-and-
transition models, which are based on knowledge and data from
a particular place such as a landscape (Spies et al. 2017) or a
fishery (Libre et al. 2015). Structurally realistic models or state-
and-transition models have a high degree of realism, with the aim

Erratum:  In the original publication of Figure 1 a label on the x axis was
missing.  The omission was corrected on 8 May 2019.
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of understanding the emergence of SES outcomes from local
interactions or from changes in state of its components,
respectively. These models are often used to explore the effect of
policies (e.g., Daloğlu et al. 2014 for agriculture, Bino et al. 2015
for floodplain management, Thulke et al. 2018 for animal
diseases) or the future development of the SES under climate
change or other external disturbances (Millington et al. 2008 for
wildfire). These models often capture structural details of a
particular setting such as spatial patterns or social or ecological
networks in a bottom-up manner using empirical data from the
case study. Structurally realistic models such as agent-based
models are particularly suitable to capture spatial aspects of the
studied SES (Filatova et al. 2013). The development of these
detailed case-based models is carried out by scientists, often from
a specific discipline such as landscape ecology, but can include
data collected through stakeholder interviews, surveys, or focus
group discussions.  

When moving along the vertical axis toward the middle-right of
the ModSES triangle (Fig. 1), modeling purposes change from a
primary focus on understanding to a focus on policy,
management, and decision support. In addition, the degree of
inclusion in model development or analysis increases for different
domain experts and stakeholders. The use of models to support
management is one of the most common uses of modeling in
environmental research and is increasingly used in SESs research
(e.g., Chapin et al. 2003, Schouten et al. 2013). Models for
management are often developed for a specific case study but their
degree of realism can vary greatly. Bioeconomic models apply
economic theory to particular cases to determine optimal
management strategies (Anderies et al. 2002, Crépin 2007); in
contrast, structurally realistic models test the consequences of
different management strategies, taking the complex adaptive
nature of SESs into account (e.g., Little et al. 2009, Walsh and
Mena 2016). System dynamics models are also a common model
type that can include more realism than bioeconomic models but
still model the system at an aggregate level in which system
dynamics are represented as stocks and flows. In these modeling
approaches, stakeholders are sometimes involved as experts to
inform model structure, identify management priorities, or
prioritize management measures and rank outcomes (e.g.,
Reichert et al. 2013).  

In the middle-left of the ModSES triangle (Fig. 1), we find
research aims related to the development of inter- or
transdisciplinary understanding and theory of SESs. Models and
the modeling processes can be useful tools to support social-
ecological integration in inter- or transdisciplinary processes
(Nicolson et al. 2002, Lade et al. 2015). Structurally realistic
models that have a degree of realism characterized as stylized or
toy models are common tools for this research aim (gray area in
Fig. 1). Their realistic but selective representation of real systems
makes them simple enough to be developed quickly and to serve
as a tool for exploring different hypotheses about causal
relationships. They thus allow for rapid prototyping and
experimentation within an iterative process of model
development and empirical research. They can support
interdisciplinary knowledge integration through a process of
codevelopment of the model by representatives of different
disciplines. This process requires participants to define the
concepts they use and make explicit their understanding and

assumptions about the SES (Nicolson et al. 2002, Olson et al.
2008), thus facilitating integration of knowledge on ecological
and social factors and dynamics of the studied SES phenomena
(e.g., Lade et al. 2015). However, given their simplistic nature, toy
models are often difficult to validate and thus should be used in
a larger context of field and experimental studies or an adaptive
management process.  

Lastly, the use or codevelopment of models in participatory
processes (participatory modeling) has become a widely used
method in environmental assessment and natural resource
management (Voinov et al. 2016), with the aim of supporting
social learning and the exploration of alternative development
pathways through scenario analysis (e.g., Carpenter et al. 2015).
Models in participatory processes can serve as boundary objects
(Mollinga 2010) that help reveal differences in problem framing,
values, and goals, and can help to enhance transparency, build
trust, and facilitate communication on complex SES relationships
(Campo et al. 2010). However, the process and context of the
development and use of models in participatory processes, as well
as their integration into the larger decision-making process, are
critically important for their success (Lynam et al. 2007). There
are a range of goals for participatory modeling: (1) using a
participatory process to increase the real-world impact to
modeling; (2) enhancing system understanding and problem
perceptions of participants, e.g., to recognize trade-offs and
potential conflicts and develop strategies to resolve them, thus
enhancing problem-solving capacity (Sandker et al. 2010,
Dumrongrojwatthana and Trébuil 2011); (3) facilitating
exploration of likely social-ecological consequences of decisions,
(4) supporting communication and learning among participants;
(5) coproducing a model to achieve a problem definition that is
relevant to the diversity of stakeholder values in a system; and (6)
supporting conflict resolution (Lynam et al. 2007, Prell et al. 2007,
Voinov and Gaddis 2008, Smajgl 2010). A range of different
model types are used, with agent-based or system dynamics
models being most prominent. Models can either be brought into
the participatory process by scientists or be codeveloped with
stakeholders to represent their system understanding and
problem perception (also called mediated modeling or companion
modeling; van den Belt 2004, Etienne 2012). Often, they are
combined with role-playing games, a combination that has been
shown to facilitate problem solving and relational learning in
complex problem situations such as river basin management
(Gurung et al. 2006, Stefanska et al. 2011).

DISCUSSION
ModSES is intended as a tool to help modelers, nonmodelers,
students, policy makers, and other stakeholders interested in using
models or modeling for SESs research to navigate the diversity of
model types as well as model building and application processes
used in SESs research and related fields. It can be used to create
awareness of the different modeling purposes and help guide or
justify the selection of a particular model type. It also facilitates
communicating a chosen approach and application to other
researchers and stakeholders by situating it along two dimensions:
generality–realism and science–society. The two axes of ModSES
merge at the top, indicating that approaches supporting societal
processes of adaptation and transformation need to incorporate
sufficient realism and be of a transdisciplinary nature. For
instance, strategy development and social learning can greatly
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benefit from the use of place-based modeling approaches that aim
to unravel causal mechanisms operating in a specific context.
There is also a need to generalize from individual cases in a way
that does justice to the importance of context, i.e., by developing
contextualized generalizations. Such an understanding of key
mechanisms at play in different contexts can provide valuable
insights about entry points for governance. Ultimately, there will
and should always be studies situated at different locations along
these two dimensions, depending on the purpose of the model or
the larger study in which it is embedded. A study may also include
several different model types to address different aspects of the
SES or stakeholder needs and to benefit from different insights
into the problem they may provide. The usefulness of modeling
studies can, however, be significantly enhanced when the choices
of degree of realism and degree of integration are well
documented and justified, and when researchers are aware of the
possibilities and limitations of each approach.  

ModSES is intended to be neither comprehensive nor exclusive
with respect to the types of models included or how to map them
onto the different research aims. Other combinations are possible
and likely, e.g., a dynamical systems model with low degree of
realism but high degree of integration used for social learning;
however, they are less common and sometimes may be
incompatible because of conflicts in underlying assumptions.
Other modelers may disagree with some of our choices based on
different experiences and interpretations with regard to which
models are most appropriate for which research aim.
Nevertheless, we believe that the scheme is useful for providing
an orientation and guide about different possibilities of modeling
in support of SESs research, particularly for those interested in
developing their first model or collaborating with modelers. We
have encountered much confusion with respect to what a model
is and can or cannot do. We hope that ModSES will provide some
clarity and a tool through which modelers can explain their
models and how and for what purposes they can be applied.  

The choice of a modeling approach is also a choice of a
conceptualization of the system of interest that will influence the
types of possible outcomes and the suitability of the approach
for a given task. The different model types have their origin in
different disciplines or research areas, which have different
ontologies, epistemologies, and methodologies. An understanding
of the conceptual foundations and system understanding
associated with a type of model is thus essential for a sensitive
use of the different approaches. Models that are based on
dynamical systems theory such as bioeconomic models, for
instance, are generally based on a view that the heterogeneity of
system components can adequately be represented by averages or
representative individuals such as a representative agent. Models
that are based in complexity theory such as agent-based models
are based on the view that heterogeneity and local adaptation are
important for system-level outcomes and that human decision
making is boundedly rational or follows other decision-making
models.  

The choice of the level of aggregation for a model, whether
elements can be represented as aggregate stocks or as individual
entities, matters whenever spatial structure or heterogeneity of
entities may influence outcomes. Railsback and Harvey (2011)
used a structurally realistic model to show that common theories

of food limitation for animal populations do not hold when
individual behavior of organisms is taken into account. Their
model of fish populations that included habitat complexity and
fish physiology revealed that active behavior of fish causes
positive feedbacks that sustain food limitation despite an increase
in food availability. This result can have important implications
for conservation strategies. Structurally realistic models have also
proven useful to reveal the effect of social heterogeneity on the
dynamics of SESs, for example, the effect of agents’ heterogeneity
on the outcome of policy interventions (Smajgl and Bohensky
2013).  

Models are simplified representations of reality in which the
process of simplification is guided by the knowledge and
assumptions of those involved in the model development process.
Model results should always be interpreted in light of these
assumptions and the underlying system conceptualization. The
documentation of assumptions and choices made when
implementing an approach and a discussion of limitations are
thus of utmost importance. Recently, several tools have been
developed to support more transparency on modeling choices
(Grimm et al. 2006, Müller et al. 2013, Schlüter et al. 2014). Model
assumptions are also critical for the applicability of a model for
policy support. For instance, the choices about how to model
human behavior have implications for the design of policies
because the response of resource users to policy determines its
effectiveness (Fulton et al. 2011). Models are increasingly being
used to test consequences for SES outcomes of alternative
assumptions about human behavior (Janssen 2016, Beckage et al.
2018) or social-ecological relations (Lade et al. 2017) to
understand better the uncertainty associated with the complexity
of human behavior and biophysical processes.  

Many challenges remain to realizing the full potential of modeling
for analysis and governance of SESs. Our review of past resilience
modeling studies shows that many models lack links to the real
world, which reflects the difficulty of building empirically based
models of truly interdependent SESs, particularly with regard to
integrating social science with natural science concepts and data
and accounting for different levels of analysis (Janssen and
Ostrom 2006, Smajgl and Barreteau 2014). Combinations of
different model types in hybrid models, e.g., dynamical systems
models with agent-based models, are a way forward to address
different levels of aggregation and make use of the strengths of
several approaches (Martin and Schlüter 2015). New modeling
approaches have also recently been developed that are promising
for the development of integrative empirical models of regime
shifts using generalized modeling (Lade et al. 2015, Lade and
Niiranen 2017) or the dynamics of social networks (Wiedermann
et al. 2015). However, there remains a dilemma for policy support
because models that are aimed to predict or optimize often do
not account for complex social-ecological interactions, whereas
those that capture social-ecological interdependence are normally
not intended for prediction (Allison et al. 2018).  

Two major challenges of SESs research in which a broadened use
of modeling may be particularly interesting are the development
of generalizable insights that do justice to the context dependence
of social-ecological processes, and the development of
understanding and theory of SESs that is truly integrative and
builds on bridging between disciplines and knowledge systems to
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capture social-ecological interactions and feedbacks across scales
and develop strategies for transformation. The lack of models of
transformation itself  (not modeling to support transformation)
may reflect the difficulty of modeling systemic reorganization
(Polhill et al. 2016). This is an interesting research frontier for SES
modeling, particularly with respect to how models can help
identify social-ecological mechanisms of transformation in
complex and continuously changing SESs and generalize beyond
single case studies. One of the largest benefits of models in SES
research, however, may actually be their potential as process tools
whereby they serve as boundary objects to challenge thinking in
disciplinary silos, and explicate differences in values, worldviews,
and understanding between different knowledge systems, and
thus, help to move toward more integrated understanding and the
development of widely accepted and co-owned solutions.
Particularly, simple inter- and transdisciplinary toy models may
be of use to address wicked problems for which traditional
disciplinary or systems engineering models fail (Allison et al.
2018).  

We believe that critical engagement with modeling for different
aims of SESs research can contribute to developing integrative
understanding and action toward enhanced resilience and
sustainability. However, it is crucial that modeling is part of a
larger process that involves, depending on the purpose, field
studies, experiments, and participatory processes. Each part of
the process highlights different aspects of the SES and involves
different data and knowledge sources, and can thus jointly create
a more differentiated and maybe adequate picture of the problem
at stake. When based on the plurality of methods and applied in
a larger process, modeling for SESs analysis, in our view, has the
potential to significantly enhance the scientific basis for the
governance of complex SESs and to support knowledge
integration and social learning for the development of strategies
and policies for SES governance. ModSES is a first step to
encourage and provide guidance for the use of models and model-
building processes involving modelers and nonmodelers as a tool
to address sustainability problems in SESs.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/10716
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Appendix for „The potential of models and modelling for social-ecological systems research – the 
reference frame MODSES” 

Section 1: Selection of papers for review of resilience models (from 1998-2011)  

We used the "Web of Science" database to identify relevant papers for our review. We searched for 
process-based modeling studies that dealt with resource management issues of social-ecological 
systems and were interested in resilience questions. We are aware that modeling studies that do not 
explicitly mention the term "resilience" but look at for instance "stability", "persistence" etc. may 
also contribute to resilience research. However in order to have a manageable number of papers we 
restricted the search to the term "resilience". 

The exact query used was: "TS=(resilience AND model AND ecol* AND (management OR resource 
OR governance))". The search was carried out in April 2009 and repeated for papers from 2009 to 
2011 in April 2012.  289 papers were detected by the search algorithm.   

After reading the abstracts/the whole papers we eliminated those studies that did not fulfilled our 
criteria. For instance we did not want to investigate pure conceptual models which present only a 
system description or model framework without any model solution. Since we were interested in 
dynamic process-based models we excluded furthermore pure statistical models. Some of the studies 
presented a purely ecological model without any management or use - a further criterion for 
exclusion. Finally only 52 papers out of the 289 papers were left over for review (see below for a list 
of the papers). The years in which articles were published are depicted in Figure A1.   
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Section 2: List of categories used for the analysis of the published models (from 1998-2011) 

       

Criteria describing field of application and model purpose  

  A Type of Ecosystem  

1.      rangeland  

2.       forest  

3.      coral reef  

4.       fisheries  

5.       lake eutrophication  

6.       agriculture  

7.       land management (general)  

8.       water management (general) 

9.      not specified  

   

B Type of Social System  

1.      Single manager  

2.      Several managers not interacting with each other  

3.      Social manager  

4.      Network of actors  

5.      Actors not specified  

     

C Model purpose  

1.    system understanding  

2.    forecasting or prediction (in quantitative manner)  

3.    management or decision support (in specific context, with management 

recommendations)  

4.    communication (to management)  

5.    learning (model used to change mental models)  
 Criteria describing model formulation, complexity and model solution  

 

E Type of model  

    1.    difference and differential equation model  

    2.    rule-based model  

    3.    state and transition model  

   

F Model complexity  

    1.    general model/conceptual model  

    2.    site/context-specific  

   

G Number of model parameters  

    1.    low (<5)  
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    2.    medium (5<p<15)  

    3.    high (>15)  

   

M Dynamics   

1.    deterministic  

2.    stochastic  

   

   

Criteria describing space and time  

I Spatial Scale  

    1.    local  

    2.    regional  

    3.    global  

   

J Time  

   1.    not dynamic  

   2.    dynamic with continuous time  

   3.    dynamic with discrete time  

       

O Type of disturbance and change  

    1.    variability in environmental variables  

    2.    shocks in environmental variables (e.g. droughts)  

    3.    changes in anthropogenic variables, e.g. management  

         Note: More in the sense of abrupt shocks  

   

P Feedbacks between social and ecological system  

1.    no  

2.    yes  

   

   

Criteria which represent the link to real world and the level of integration  

R Uncertainty  

1.    not considered  

2.    considered  

   

T Model validation  

1.    no  

2.    yes  
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U Sensitivity analysis   

1.    no  

        2.    yes    
Z Model limits  

1.    discussed  

2.    not discussed  

   

AA Link to “real world”  

1.    parameterized with empirical data  

2.    validated with empirical data / pattern  

3.    application for management discussed  

4.    no link  

   

Criteria related to resilience theory  

V Resilience concept  

1.    resilience = return time to equilibrium (“technical resilience”)  

2.    resilience = capacity of system to maintain structure and function when disturbed  

3.    other use of resilience term  

4.    not specified  

   

W Resilience Mechanism  

 1.    buffer in system structure  

2.    response diversity  

3.    functional diversity  

4.    heterogeneity  

5.    time lags  

6.    cross scale effect  

7.    adaptive capacity of management  

8.    others  

9.    not specified  

     

X Measures of resilience  

1.    return time to equilibrium  

2.    size of basin of attraction  

3.    position of system in relation to threshold  

4.    performance indicators (productivity)  

5.    others  

6.    not specified  
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Y Additional considered aspects of resilience  

1.    adaptive cycle  

2.    panarchy (cross scale interactions)  

3.    adaptability  

4.    transformability  

5.    slow and fast variables  

     6.    memory effect  

7.    thresholds  

 

Section 3: Historical use of modeling in resilience research 
 

Table A1: Results of the review of 52 models of resilience from 1998-2011   

Study aims 
Purpose of the model 

# of 

papers  
Key insights 

Understanding 

SES persistence 

System understanding 
Assessment of resilience of a specific 
system 

6 

Few models include feedbacks 
between social and ecological 
system 
 
Social system often not 

specified (e.g. only 

represented as variable that 

drives the ecological system) 

Identification of system characteristics and 
mechanisms that determine persistence 

 buffer 

 response diversity 

 governance or network structure 

 connectivity 

11 

 

Development of methods to operationalize 
and analyze resilience; predict critical 
transitions 

6 

Development of measures to quantify 
resilience or indicators of critical 
transitions 

5 

Managing SES 

persistence 

Decision/Management support 
Evaluation of management strategies   

 Explorative assessment of alternative 
management measures  

 Assessing the tradeoff between 
resilience and economic productivity 

 

13 

 
10 

 
3 

Lack of explicit links with real 
world (validation, uncertainty 
analysis, sensitivity analysis) 
 
Only few studies look at robust 

strategies Development of optimal management 
strategies 

 

7 

 

Understanding 

and managing 

adaptation and 

transformation 

Model purpose: System understanding 

Understanding adaptive capacity and 

traps 

4 

Only few studies address 

adaptation of social system to 

change 

No study addresses 

transformation 

   

Detailed results of the review 
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Social-ecological systems considered and integration of the ecological and social subsystems  

 

Figure A2: Ecological system/resource system (a) and social systems (b) regarded (Scale: number of 
papers out of all papers included in review (52))  

The investigation shows that modeling studies about resilience have been developed for all different 
types of ecosystems or resource systems (rangeland, forest, coral reefs, fisheries, lakes, agriculture, 
land management and water management) (cf. Figure A2a). However, the social system is often not 
further specified (cf. Figure A2b), but rather represented as a change in a driving variable that is 
implicitly caused by change in management.  Apart from that 31% of the studies assume a social 
manager and 19% a single one. Only in few cases a network of actors is considered (e.g. Bodin and 
Norberg (2005)).  

The majority of studies (57%) consider feedbacks between social and ecological systems. However it 
is revealed that the inclusion of feedbacks varies for different model types: Social-ecological 
feedbacks are more present in the generic models (62%) compared to context-specific models (50%). 
Furthermore social-ecological feedbacks are more often included in models that apply differential or 
difference equations (64.0%) compared to rule-based (40%) and state and transition models (45%) 
(no figure). 

Investigating whether disturbance is caused by anthropogenic or ecological variables the following 
results were depicted. In 25% of the papers disturbance was caused by variability in environmental 
variables, 35% caused by shocks in environmental variables and 69% caused by changes in 
anthropogenic variables (cf. Figure A3).   
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Figure A3: Types of disturbances represented in the models (Scale: number of papers out of all 

papers included in review (52))  

Modelling techniques and system representation  

Regarding the model type, the review process revealed that the majority (75%) of the studies used 

difference and differential equation to formulate the model, 19% used rule based models and 21% 

state and transition models (multiple answers possible, e.g. Bodin 2005 used differential equation to 

describe the ecological model and multi-agent simulation for the social system).  

46% of the studies are stochastic. All models are formulated in a dynamic manner: 58% with 

continuous time, 42% with discrete time. From the spatial scale point of view: 67% addressed a local 

problem and 31% a regional. Two studies addressed a global scale.  

 Another focus of our review was set on whether the model built is context specific or is rather of 

general character (generic). The majority of the model studies used a generic model (67%). 35% of 

the models where context-specific (double entries were possible.) In a first specification, we wanted 

to investigate, whether a context-specific study uses another model description (rule-based vs. 

purely analytical) than a general one.  Our review showed the following: Most general models were 

described by difference or differential equations (77%), secondly 18% by state-and transition models 

and 5% by rule-based models. Context-specific models are priorly formulated by rule-based models 

(38%) and 43% by equation-based approaches and 19% by state-and-transition models.  

In a second specification, we wanted to investigate, if the utilization of context-specific vs. general 
model approach depends on the model purpose. We revealed the following: Models that address 
management issues, aim at forecast or support communication are rather context-specific than 
general and beside from that more complex (via number of parameters) compared to models with 
purpose understanding (Figures A4b, c). Consequently more than 50% of the management support 
models have high number of parameters, while most of the system understandings models have 
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medium numbers. There are only very few models with a low number of parameters (in system 
understanding) (Fig. A4c).  

A further difference in system representation depended on the modeled resource system: In 
rangeland, forest, fisheries, agriculture, land and water management there are both general and 
context-specific models. However for lake eutrophication, coral reef and studies where the type of 
ecosystem is not specified exclusively general models were used. Apart from coral reef, different all 
model types appear for the resource systems. State and transition models are not as common, 
mainly used in models about rangelands, forests and in models where the resource system is not 
specified.  

   
 Figure A4: Relationship between model purpose and modeling technique (a) model type, b) model 
complexity and c) number of parameters used).      
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